Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Anal Bioanal Chem ; 414(19): 5877-5886, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35661234

RESUMO

Non-steroidal anti-inflammatory drugs (NSAIDs) have been reported to be the main pharmaceutical class accumulated in seafood. Among them, ibuprofen (IBU) is of special concern as it is used worldwide to treat common pain, does not require a medical prescription, it is often taken in a high daily dose, and has been reported to cause potential adverse effects on aquatic organisms. IBU is highly transformed into hydroxy- and carboxy-metabolites and/or degradation products generated not only after its administration but also during wastewater treatment or in the environment. These compounds can be present in the environment at higher concentrations than IBU and present higher toxicity. In this work, a low-cost and affordable routine analytical method was developed and validated for the first-time determination of IBU and its main metabolites in mussels. The method is based on ultrasound-assisted extraction (UAE), clean-up by dispersive solid-phase extraction (d-SPE) and analytical determination by liquid chromatography-tandem mass spectrometry. Box-Behnken experimental design was used for method optimisation to better evaluate the influence and interactions of UAE and d-SPE variables. Extraction recoveries were in the range from 81 to 115%. Precision, expressed as relative standard deviation, was lower than 7%. Method detection limits were in the range from 0.1 to 1.9 ng g-1 dry weight. The method was successfully applied to wild mussels.


Assuntos
Bivalves , Ibuprofeno , Animais , Cromatografia Líquida de Alta Pressão/métodos , Limite de Detecção , Alimentos Marinhos , Extração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/métodos
3.
Chemosphere ; 305: 135462, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35753414

RESUMO

The assessment of contaminants of emerging concern, alone and in mixtures, and their effects on marine biota requires attention. 5-Fluorouracil is a cytostatic category 3 anti-cancer medication (IARC) that is used to treat a variety of cancers, including colon, pancreatic, and breast cancer. In the presence of other pollutants, this pharmaceutical can interact and form mixtures of contaminants, such as adhering to plastics and interaction with metal nanoparticles. This study aimed to comprehend the effects of 5-Fluorouracil (5FU; 10 ng/L) and a mixture of emerging contaminants (Mix): silver nanoparticles (nAg; 20 nm; 10 µg/L), polystyrene nanoparticles (nPS; 50 nm; 10 µg/L) and 5FU (10 ng/L), in an in vivo (21 days) exposure of the mussel Mytilus galloprovincialis. A multibiomarker approach namely genotoxicity, the antioxidant defence system (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (GPx), glutathione - S - transferases (GST) activities), and oxidative damage (LPO) was used to assess the effects in gills and digestive gland of mussels. Both treatments cause genotoxicity in mussel's haemolymph, and antagonism between contaminants was observed in the Mix. Genotoxicity observed confirms 5FU's mode of action (MoA) by DNA damage. The antioxidant defence system of mussels exposed to 5FU kicked in and counter balanced ROS generated during the exposure, though the same was not seen in Mix-exposed mussels. Mussels were able to withstand the effects of the single compound but not the effects of the Mix. For oxidative stress and damage, the interactions of the components of the mixture have a synergistic effect.


Assuntos
Citostáticos , Nanopartículas Metálicas , Mytilus , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Citostáticos/toxicidade , Fluoruracila/toxicidade , Glutationa/farmacologia , Peroxidação de Lipídeos , Nanopartículas Metálicas/toxicidade , Mytilus/metabolismo , Estresse Oxidativo , Prata/toxicidade , Poluentes Químicos da Água/análise
4.
Biomolecules ; 12(1)2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35053226

RESUMO

This study investigated the ecotoxicological effects of differently sized (4-6 µm and 20-25 µm) low-density polyethylene (LDPE) microplastics (MPs), with and without adsorbed benzo-a-pyrene (BaP), in clam Scrobicularia plana. Biomarkers of oxidative stress (superoxide dismutase-SOD; catalase-CAT), biotransformation (glutathione-S-transferases-GST), oxidative damage (lipid peroxidation-LPO) and neurotoxicity (acetylcholinesterase-AChE) were analysed in gills and digestive glands at different time intervals for a total of 14 days of exposure. In order to have a better impact perspective of these contaminants, an integrated biomarker response index (IBR) and Health Index were applied. Biomarker alterations are apparently more related to smaller sized (4-6 µm) MPs in gills and to virgin LDPE MPs in the digestive gland according to IBR results, while the digestive gland was more affected by these MPs according to the health index.


Assuntos
Benzo(a)pireno/toxicidade , Bivalves/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Microplásticos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais
5.
Chemosphere ; 287(Pt 4): 132356, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34600009

RESUMO

Nanoplastics (NP) (1-100 nm) are a growing global concern, and their adverse effects in marine organisms are still scarce. This study evaluated the effects of polystyrene nanoplastics (10 µg/L; 50 nm nPS) in the marine mussel Mytilus galloprovincialis after a 21 - day exposure. The hydrodynamic diameter and zeta potential of nPS were analysed, over time, in seawater and ultrapure water. A multibiomarker approach (genotoxicity (the comet assay) was assessed in mussel haemocytes, and the antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx)), biotransformation enzyme (glutathione - S - transferase (GST)), and oxidative damage (LPO)) was assessed in gills and digestive glands to evaluate the toxicity of nPS towards mussels. In seawater, aggregation of nPS is favoured and consequently the hydrodynamic diameter increases. Genotoxicity was highly noticeable in mussels exposed to nPS, presenting a higher % tail DNA when compared to controls. Antioxidant enzymes are overwhelmed after nPS exposure, leading to oxidative damage in both tissues. Results showed that mussel tissues are incapable of dealing with the effects that this emerging stressor pursues towards the organism. The Integrated Biomarker Response index, used to summarise the biomarkers analysed into one index, shows that nPS toxicity towards mussels are both tissue and time dependent, being that gills are the tissue most compromised.


Assuntos
Mytilus , Nanopartículas , Poluentes Químicos da Água , Animais , Biomarcadores/metabolismo , Brânquias/metabolismo , Mytilus/metabolismo , Nanopartículas/toxicidade , Estresse Oxidativo , Poliestirenos/metabolismo , Poliestirenos/toxicidade , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
6.
Environ Pollut ; 273: 116426, 2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33493763

RESUMO

Emerging contaminants, such as nanoplastics, are gaining a vast interest within the scientific community. Most of the plastic debris found in the marine environment originates from land-based sources, and once in the marine environment, plastic can be degraded into smaller fragments. Nanoplastics are considered to fall within the definition of other nanoparticles (1-100 nm in size) and may be divided into primary or secondary nanoplastics. Primary nanoplastics are those that enter the environment in their original small size associated with specific applications and consumer products, whilst secondary nanoplastics are a consequence of macro/microplastic degradation. The formation of nanoplastics changes the physical-chemical characteristics of the particle, thus at a nanoscale, it is expected that the strength, conductivity, and reactivity of the nanoparticles will differ substantially from macro/micro-sized particles. To date, the toxicity nanoplastics may pursue on marine biota is still scarce. Herein, a review of the available data on the effects of different polymer types of nanoplastics specific to marine biota is accounted for.

7.
Chemosphere ; 261: 127678, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32717509

RESUMO

The rise of cancer cases worldwide led to an increase in production and consumption of anticancer drugs, that ultimately end up in the marine environment and are accumulated in aquatic organisms. Cyclophosphamide (CP) is a cytotoxic alkylating agent frequently prescribed in cancer treatments. This study assess ecotoxicological effects of CP on mussels Mytilus galloprovincialis, through in vivo and ex vivo approaches and compares the sensitivity of mussel haemocytes with well-established human cell lines (RPE and HeLa). Mussels were exposed in vivo to CP (1000 ng L-1) and several biomarkers analysed in gills and digestive glands namely neurotoxicity (AChE activity), oxidative stress (GPx activity), biotransformation (GST activity), lipid peroxidation (LPO) and apoptosis (caspase activity), whereas genotoxicity was determined in mussels' haemocytes. Cytotoxicity was also assessed in haemocytes (in vivo and ex vivo) and human cell lines (in vitro) exposed to a range of CP concentrations (50, 100, 250, 500 and 1000 ng L-1) over 24 h, via neutral red assay. In in vivo exposure, detoxification of CP did not efficiently occur in the gills while in digestive glands GPx and GST activities were induced, jointly with a decrease in lipid peroxidation, indicating a potential outcome of the protective antioxidant mechanisms, whereas no apoptosis was noted. Moreover, cytotoxicity and DNA damage were detected in haemocytes. The ex vivo exposure haemocytes to CP caused cytotoxicity (from 100 ng L-1), whereas no effects occurred in human cell lines. This suggests that, at relevant environmental concentrations, CP cause subtle and irreversible impacts on M. galloprovincialis.


Assuntos
Antineoplásicos/toxicidade , Ciclofosfamida/toxicidade , Mytilus/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Antineoplásicos/metabolismo , Antioxidantes/metabolismo , Organismos Aquáticos/metabolismo , Biomarcadores/metabolismo , Biotransformação , Linhagem Celular , Dano ao DNA , Ecotoxicologia , Brânquias/metabolismo , Humanos , Peroxidação de Lipídeos , Mytilus/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Alimentos Marinhos
8.
Sci Total Environ ; 733: 139102, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32446057

RESUMO

Microplastics (MPs) lipophilic nature and widespread distribution raises concerns due to their increasing presence in the marine environment and their ability to adsorb organic contaminants, as being potential vehicles for transport and potential source of accumulation of organic contaminants by marine organisms. The organic UV-filter, oxybenzone (BP-3) is a constituent of sunscreens and personal care products, entering the marine environment either by direct contact with swimmers or by wastewater effluents. In this study the ecotoxicological effects of exposure to low-density polyethylene (LDPE) microplastics with and without adsorbed BP-3 were investigated in the peppery furrow shell clam, Scrobicularia plana. LDPE microplastics with a size range of 11-13 µm were previously contaminated with an environmentally relevant concentration of BP-3 (82 ng g-1). S. plana individuals were exposed to a concentration of 1 mg L-1 of microplastics with and without BP-3 adsorbed in a water-sediment exposure system for 14 days. Clams were sampled at the beginning of the experiment and after 3, 7, and 14 days of exposure. Multiple biomarkers were analysed to investigate the effect of exposure in different clam tissues, gills, digestive gland, and haemolymph. Antioxidant (superoxide dismutase, catalase, glutathione peroxidase) and biotransformation (glutathione-S-transferases) enzyme activities, oxidative damage (lipid peroxidation), genotoxicity (single and double strand DNA breaks), and neurotoxicity (acetylcholinesterase activity) were assessed along with two biomarker indexes to assess the overall health status. Results indicate that after 7 days of exposure MPs with adsorbed BP-3 induced oxidative stress and damage, when compared to exposure to virgin MPs and control treatments. Neurotoxic effects were also noted in MPs with adsorbed BP-3 after 14 days exposure, while some evidence points to increased genotoxicity with exposure time. Overall results indicate that gills were more affected by exposure to microplastics than digestive gland and that biomarkers alterations are apparently more related to the toxicity of BP-3 adsorbed than virgin MPs alone.


Assuntos
Bivalves , Poluentes Químicos da Água/análise , Animais , Benzofenonas , Biomarcadores , Microplásticos , Estresse Oxidativo , Plásticos
9.
Mar Pollut Bull ; 143: 140-143, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31789149

RESUMO

In this study, the acute toxicity of microplastics (MPs) on unicellular organisms as marine decomposers and microalgae was assessed, by evaluating standards endpoints included in International Standard Organization (ISO) protocols. The bacteria Vibrio fischeri and the diatom Phaeodactylum tricornutum were exposed to different sizes (1-500 µm) of polyethylene MPs in order to evaluate bioluminescence inhibition and microalgal growth. No acute toxicity was found on bacteria or microalgae in an order of magnitude above environmentally relevant concentrations, suggesting that tested MPs did not affect the investigated biological processes. In conclusion, standard ecotoxicological endpoints are not sufficiently sensitive to assess the potential effects of MPs on decomposers and primary producers, conversely to nanoplastics. These findings highlight that the current approach for MP risk assessment in unicellular species should be revised, by providing alternative endpoints to be included in standardized protocols, able to monitor the fate and biological effects of MPs.


Assuntos
Aliivibrio fischeri/efeitos dos fármacos , Diatomáceas/efeitos dos fármacos , Ecotoxicologia/métodos , Microplásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Microalgas/efeitos dos fármacos , Polietileno/toxicidade , Testes de Toxicidade Aguda
10.
Sci Total Environ ; 691: 187-194, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31319255

RESUMO

In this study, the concentrations of cadmium (Cd), lead (Pb), chromium (Cr), copper (Cu), cobalt (Co), nickel (Ni), manganese (Mn) and zinc (Zn) were investigated in the blood of Scopoli's shearwaters (Calonectris diomedea). Blood samples (N=238) were collected from both juvenile and adult individuals during seven breeding seasons between 2007 and 2014, excluding 2013. Sampling was performed in the pristine environment of the Strofades island complex, Greece, where the largest colony of Scopoli's shearwaters is located in the Eastern Mediterranean basin. The median concentrations of the toxic metals, Cd and Pb, were 0.010 and 0.24µg/g (dry weight; dw), respectively, which were in good agreement with previous studies. The median concentrations of Co, Cr, Cu, Mn, Ni, Zn were 0.18, 1.11, 3.41, 0.29, 0.61, and 22.9µg/g dw, respectively. Inter-annual differences were observed among the concentrations of all assessed metals, except for Ni and Cd, which demonstrated similarities among female individuals. Age-group related differences were observed in both genders for Cd, Cu and Cr, but only among males for Zn. To the best of our knowledge, this is the longest multi-year biomonitoring study of select trace metals that has been conducted thus far on blood samples from Scopoli's shearwater species.


Assuntos
Aves/sangue , Monitoramento Ambiental , Metais/sangue , Poluentes Químicos da Água/sangue , Animais , Feminino , Grécia , Masculino
11.
Environ Pollut ; 252(Pt B): 1180-1192, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31252116

RESUMO

The increasing consumption of anticancer drugs through single and/or combinatory chemotherapy worldwide raised concern regarding their toxicity burden in coastal zones. The toxicity of a mixture of three compounds involving the drugs cisplatin (CisPt), cyclophosphamide (CP) and tamoxifen (TAM) was determined on the marine polychaete Nereis diversicolor exposed to an increasing range of their concentrations, respectively: Mix A: 0.1 + 10 + 0.1 ng L-1; Mix B: 10 + 100 + 10 ng L-1; Mix C: 100 + 500 + 25 ng L-1; Mix D: 100 + 1000 + 100 ng L-1. Different endpoints were assessed, including disturbance in the burrowing behaviour, neurotoxicity (acetylcholinesterase - AChE activity), antioxidant enzymes (superoxide dismutase - SOD; catalase - CAT; selenium-dependent glutathione peroxidase - Se-GPx and total glutathione peroxidases T-GPx activities), biotransformation metabolism (glutathione-S-transferases - GST), lipid peroxidation (LPO) and genotoxicity (DNA damage). Biological effects of the mixtures of anticancer compounds on N. diversicolor were compared with previous studies about effects on the same biological model under single-drug exposure conducted with the same molecules. Regarding SOD activity, TAM showed an antagonist effect over CisPt and CP in mixtures C and D. In Mix D, there was a synergistic effect of TAM and CisPt that inhibited CAT activity and an additive interaction of CisPt and CP on the Phase II biotransformation enzyme. Drugs in Mix A also suppressed polychaetes' GST activity, although different from the respective single-drug responses, besides able to induce T-GPx activity, that was not sufficient to avoid oxidative damage and mid-grade DNA damage. Due to the absence of burrowing impairment in Mix A, mechanisms involved in neurotoxicity were other than the one driven by AChE alterations. At the intermediary concentrations (Mix B and C), only LPO occurred. Data from drugs individually may not predict the risks provided by mixtures.


Assuntos
Antineoplásicos/toxicidade , Poliquetos/fisiologia , Poluentes Químicos da Água/toxicidade , Acetilcolinesterase/metabolismo , Animais , Antineoplásicos/metabolismo , Antioxidantes/metabolismo , Biotransformação , Catalase/metabolismo , Ciclofosfamida/metabolismo , Dano ao DNA , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Poliquetos/metabolismo , Selênio/metabolismo , Superóxido Dismutase/metabolismo
12.
Ecotoxicology ; 28(3): 294-301, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30863973

RESUMO

The increasing use of rare earth elements (REEs) in diverse technological applications has augmented the demand and exploitation of these worldwide, leading to a higher input of REEs + Yttrium (Y) in the marine environment. The present study investigated the ecotoxicity of Lanthanum (La) and Y to Mytilus galloprovincialis developing embryos and juveniles. This was achieved by quantifying the embryogenesis success after 48 h, and survival of juveniles after 96 h of exposure to different concentrations of La and Y. Results show that both La and Y are more toxic to developing embryos and larvae than to juveniles of M. galloprovincialis. Predicted no-effect concentration (PNEC) values were also derived for the embryo development as a preliminary approach to assess the environmental risk for these compounds to marine organisms. Results revealed that La is more toxic than Y. The high sensitivity of the early developmental stages to these compounds highlight the relevance of including these stages when evaluating the toxicity of chemicals where little information is available. Although older life stages may be more tolerant to toxicants, the population survival will be compromised if new recruits are not viable, with implications to the whole ecosystem health and functioning of the impacted area. Information on the ecotoxicity of chemicals with expanded technological use and that may be released during deep-sea mining activities is urgent in order to help estimate environmental impacts.


Assuntos
Metais Terras Raras/toxicidade , Mytilus/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Ecotoxicologia , Desenvolvimento Embrionário/efeitos dos fármacos , Meio Ambiente , Lantânio/toxicidade , Larva/efeitos dos fármacos , Metais Terras Raras/metabolismo , Oceanos e Mares , Alimentos Marinhos/análise , Poluentes Químicos da Água/metabolismo , Ítrio/toxicidade
13.
Bull Environ Contam Toxicol ; 102(3): 341-346, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30600390

RESUMO

Effects of copper oxide nanoparticles (CuO NPs) were investigated in the midgut and fat body of Galleria mellonella. Fourth instar larvae were exposed to 10 µg Cu/L of CuO until becoming last instar larvae, and catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione-s-transferase (GST) and acetylcholinesterase (AChE) and metal accumulation were evaluated. Copper accumulation was observed in midgut and fat body tissues of G. mellonella larvae exposed to CuO NPs. CuO NPs increased CAT activities in midgut and fat body, while SOD activities were decreased. CuO NPs exhibited significant increases in GST activity in fat body, while no significant differences were observed in the midgut of G. mellonella larvae. AChE activity significantly decreased in the midgut of G. mellonella whereas there is no significant effect on fat body in CuO NPs exposed larvae. In overall, these findings demonstrate that tissue accumulation and oxidative stress that is countered by antioxidant enzymes occur when G. mellonella larvae exposed to environmental concentration of CuO nanoparticles.


Assuntos
Antioxidantes/metabolismo , Cobre/metabolismo , Mariposas/efeitos dos fármacos , Nanopartículas/toxicidade , Acetilcolinesterase/metabolismo , Animais , Catalase/metabolismo , Cobre/toxicidade , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Larva/efeitos dos fármacos , Larva/metabolismo , Nanopartículas Metálicas , Mariposas/metabolismo , Estresse Oxidativo , Óxidos , Superóxido Dismutase/metabolismo
14.
Ecotoxicol Environ Saf ; 171: 621-630, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30658297

RESUMO

Proteomic changes in the "gill-bacteria complex" of the hydrothermal vent mussel B. azoricus exposed to cadmium in pressurized chambers ((Incubateurs Pressurises pour l'Observation en Culture d'Animaux Marins Profonds - IPOCAMP) were analyzed and compared with the non-exposed control group. 2-D Fluorescence Difference Gel Electrophoresis (2D-DIGE) showed that less than 1.5% of the proteome of mussels and symbiotic bacteria were affected by a short-term (24 h) Cd exposure. Twelve proteins of the more abundant differentially expressed proteins of which six were up-regulated and six were down-regulated were excised, digested and identified by mass spectrometry. The identified proteins included structural proteins (actin/actin like proteins), metabolic proteins (calreticulin/calnexin, peptidyl-prolyl cis-trans isomerase, aminotransferase class-III, electron transfer flavoprotein, proteasome, alpha-subunit and carbonic anhydrase) and stress response proteins (chaperone protein htpG, selenium-binding protein and glutathione transferases). All differently expressed proteins are tightly connected to Cd exposure and are affected by oxidative stress. It was also demonstrated that B. azoricus was well adapted to Cd contamination therefore B. azoricus from hydrothermal vent areas may be considered a good bioindicator.


Assuntos
Cádmio/toxicidade , Mytilidae/efeitos dos fármacos , Proteoma , Animais , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Eletroforese em Gel Bidimensional , Regulação da Expressão Gênica , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Brânquias/microbiologia , Fontes Hidrotermais , Mytilidae/metabolismo , Mytilidae/microbiologia , Estresse Oxidativo/efeitos dos fármacos , Proteoma/metabolismo , Simbiose
15.
Aquat Toxicol ; 203: 117-129, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30119036

RESUMO

Proteomic analysis was performed to compare the effects of Arsenic (As), seawater acidification (Low pH) and the combination of both stressors (Low pH + As) on Crassostrea angulata and Crassostrea gigas juveniles in the context of global environmental change. This study aimed to elucidate if two closely related Crassostrea species respond similarly to these environmental stressors, considering both single and combined exposures, to infer if the simultaneous exposure to both stressors induced a differentiated response. Identification of the most important differentially expressed proteins between conditions revealed marked differences in the response of each species towards single and combined exposures, evidencing species-related differences towards each experimental condition. Moreover, protein alterations observed in the combined exposure (Low pH + As) were substantially different from those observed in single exposures. Identified proteins and their putative biological functions revealed an array of modes of action in each condition. Among the most important, those involved in cellular structure (Actin, Atlastin, Severin, Gelsolin, Coronin) and extracellular matrix modulation (Ependymin, Tight junction ZO-1, Neprilysin) were strongly regulated, although in different exposure conditions and species. Data also revealed differences regarding metabolic modulation capacity (ATP ß, Enolase, Aconitate hydratase) and oxidative stress response (Aldehyde dehydrogenase, Lactoylglutathione, Retinal dehydrogenase) of each species, which also depended on single or combined exposures, illustrating a different response capacity of both oyster species to the presence of multiple stressors. Interestingly, alterations of piRNA abundance in C. angulata suggested genome reconfiguration in response to multiple stressors, likely an important mode of action related to adaptive evolution mechanisms previously unknown to oyster species, which requires further investigation. The present findings provide a deeper insight into the complexity of C. angulata and C. gigas responses to environmental stress at the proteome level, evidencing different capacities to endure abiotic changes, with relevance regarding the ecophysiological fitness of each species and competitive advantages in a changing environment.


Assuntos
Ácidos/toxicidade , Arsênio/toxicidade , Crassostrea/metabolismo , Exposição Ambiental/análise , Proteoma/metabolismo , Água do Mar/química , Animais , Crassostrea/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Proteômica , Especificidade da Espécie , Poluentes Químicos da Água/toxicidade
16.
Chemosphere ; 209: 307-318, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29933167

RESUMO

Exposure of aquatic organisms to polycyclic aromatic hydrocarbons (PAH), such as phenanthrene (PHE), may increase the production of reactive oxygen species (ROS) and cause changes in the biotransformation systems. In addition, changes in water temperature can cause adverse effects in the organisms. Estuarine species, like the oyster Crassostrea brasiliana, can adapt and tolerate temperature variation. To evaluate the influence of temperature on biological responses of C. brasiliana exposed to PHE, oysters were maintained at three temperatures (18, 24 and 32 °C) for 15 days and co-exposed afterwards to 100 µg.L-1 of PHE for 24 and 96 h. Levels of PHE in the water and oyster tissues were determined, respectively after 24 and 96 h. In addition, thermal stress, biotransformation and oxidative stress-related genes were analyzed in oyster gills, together with the activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferases (GST) and levels of lipid peroxidation. Oyster accumulated significant levels of PHE. HSP70-like transcripts were affected by PHE exposure only at 32 °C. Transcript levels of cytochrome P450 isoforms (CYP2-like2 and CYP2AU1) were down-regulated in oysters exposed to PHE for 24 h at 32 °C. GSTΩ-like transcript levels were also down-regulated in the PHE-exposed group at 32 °C. After 96 h, CYP2-like2 transcripts were higher in the PHE exposed groups at 32 °C. Oysters kept at 18 °C showed higher levels of SOD-like transcripts, together with higher GST, GPx and G6PDH activities, associated to lower levels of lipoperoxidation. In general the biological responses evaluated were more affected by temperature, than by co-exposure to PHE.


Assuntos
Crassostrea/química , Fenantrenos/efeitos adversos , Poluentes Químicos da Água/metabolismo , Animais , Temperatura
17.
Aquat Toxicol ; 201: 109-118, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29906693

RESUMO

Diesel fuel water-accommodated fraction (diesel-WAF) is a complex mixture of organic compounds that may cause harmful effects to marine invertebrates. Expression of microsomal proteins can be changed by oil exposure, causing functional alterations in endoplasmic reticulum (ER). The aim of this study was to investigate changes in protein expression signatures in microsomes of oysterl Crassostrea brasiliana (=C.gasar) gill after exposure to 10% diesel-WAF for 24 and 72 h. Protein expression signatures of gills of oysters exposed to diesel-WAF were compared to those of unexposed oysters using two-dimensional electrophoresis (2-DE) to identify differentially expressed proteins. A total of 458 protein spots with molecular weights between 30-75 kDa were detected by 2-DE in six replicates of exposed oyster proteomes compared to unexposed ones. Fourteen differentially expressed proteins (six up-regulated and eight down-regulated) were identified. They are: proteins related to xenobiotic biotransformation (cytochrome P450 6 A, NADPH-cytochrome P450 reductase); cytoskeleton (α-tubulin, ß-tubulin, gelsolin); processing and degradation of proteins pathways (thioredoxin domain-containing protein E3 ubiquitin-protein ligase MIB2); involved in the biosynthesis of glycolipids and glycoproteins (beta-1,3-galactosyltransferase 1); associated with stress responses (glutamate receptor 4 and 14-3-3 protein zeta, corticotropin-releasing factor-binding protein); plasmalogen biosynthesis (fatty acyl-CoA reductase 1), and sodium-and chloride-dependent glycine transporter 2 and glyoxylate reductase/hydroxypyruvate reductase. Different patterns of protein responses were observed between 24 and 72 h-exposed groups. Expression pattern of microsomal proteins provided a first insight on the potential diesel-WAF effects at protein level in microsomal fraction of oyster gills and indicated new potential biomarkers of exposure and effect. The present work can be a basis for future ecotoxicological studies in oysters aiming to elucidate the molecular mechanisms behind diesel-WAF toxicity and for environmental monitoring programs.


Assuntos
Crassostrea/metabolismo , Exposição Ambiental/análise , Gasolina/toxicidade , Brânquias/metabolismo , Microssomos/metabolismo , Proteômica/métodos , Poluentes Químicos da Água/toxicidade , Água/química , Animais , Biotransformação , Fracionamento Químico , Eletroforese em Gel Bidimensional , Proteoma/metabolismo
18.
Ecotoxicology ; 27(4): 402-410, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29396673

RESUMO

Quantum dots (QDs) are a class of engineered nanoparticles (ENPs) with several biomedical, industrial and commercial applications. However, their metabolism and detoxification process in aquatic invertebrates and environmental health hazards remain unclear. This study investigate the transcriptional changes of metallothioneins (MTs) isoforms (mt10IIIa and mt20IV) induced by CdTe QDs, in comparison with its dissolved counterpart, in the marine mussel Mytilus galloprovincialis. Mussels were exposed to CdTe QDs and to the same Cd concentration (10 µg Cd L-1) of dissolved Cd for 14 days and mt transcription levels were measured by real time quantitative PCR (qPCR). Tissue specific mt transcription patterns were observed in mussels exposed to both Cd forms, wherein the gills were a more sensitive organ compared to the digestive gland. No significant changes were observed in mt10IIIa transcription levels in mussels exposed to both Cd forms. In contrast, transcription of mt20IV was tissue and exposure time dependent, with higher mt20IV mRNA levels in mussels exposed to QDs and dissolved Cd when compared to unexposed mussels. Multivariate analysis indicates particle-specific effects after 14 days of exposure and a dual role of MTs in the QD metabolism and in the protection against oxidative stress in mussels exposed to Cd-based ENPs.


Assuntos
Compostos de Cádmio/efeitos adversos , Metalotioneína/genética , Mytilus/efeitos dos fármacos , Pontos Quânticos/efeitos adversos , Telúrio/efeitos adversos , Transcrição Gênica/efeitos dos fármacos , Poluentes Químicos da Água/efeitos adversos , Animais , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Metalotioneína/metabolismo , Estresse Oxidativo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
19.
Mar Environ Res ; 135: 70-81, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29402519

RESUMO

The vent blood-red commensal polynoid polychaete Branchipolynoe seepensis is commonly found in the pallial cavity of the vent mussel Bathymodiolus azoricus, the dominant bivalve species along the Mid-Atlantic-Ridge (MAR) and is known to be kleptoparasitic. Mussels were collected from three hydrothermal vent fields in the MAR: Menez Gwen (850 m depth, MG2, MG3 and MG4), Lucky Strike (1700 m depth, Montségur-MS and Eiffel Tower-ET) and Rainbow (2300 m depth). Polychaetes were absent in all Menez Gwen vent mussels, while the highest percentage was detected in mussels from Lucky Strike, where more than 70% of the mussels had at least one polychaete in their mantle cavity, followed by Rainbow with 33% of mussels with polychaetes. Total metal concentrations (Ag, Cd, Co, Cu, Fe, Mn, Ni and Zn) were determined in polychaetes whole body and in the mussel tissues (gills, digestive gland and mantle). To understand the possible metal interactions between symbiont and host, the activity of antioxidant defence (catalase (CAT), metallothioneins (MTs)), biotransformation enzymes (glutathione-s-transferases (GST)) activities and lipid peroxidation (LPO) were determined in polychaete whole soft tissues and in mussel tissues (gills, digestive gland and mantle). Metal concentrations in polychaetes and mussels tissues indicated that the accumulation patterns were species specific and also influenced by, and possibly dependent upon, the inter- and intra-variation of vent physico-chemistry between hydrothermal fields. Despite not detecting any strong correlations between metal and enzymes activities in polychaetes and mussels, when in presence of polychaetes, mussels presented less metal concentrations in the gills and digestive gland and lower activity of enzymatic biomarkers. This leads to infer that the polychaete plays a role on the detoxification process, and the interaction between the polychaete mussel association is probably an adaptation to metals concentrations at the vent sites.


Assuntos
Fontes Hidrotermais , Metais/metabolismo , Mytilidae/fisiologia , Poliquetos/fisiologia , Poluentes Químicos da Água/metabolismo , Animais , Brânquias , Metalotioneína
20.
Mar Pollut Bull ; 122(1-2): 379-391, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28684108

RESUMO

One of the most common plastics in the marine environment is polystyrene (PS) that can be broken down to micro sized particles. Marine organisms are vulnerable to the exposure to microplastics. This study assesses the effects of PS microplastics in tissues of the clam Scrobicularia plana. Clams were exposed to 1mgL-1 (20µm) for 14days, followed by 7days of depuration. A qualitative analysis by infrared spectroscopy in diffuse reflectance mode period detected the presence of microplastics in clam tissues upon exposure, which were not eliminated after depuration. The effects of microplastics were assessed by a battery of biomarkers and results revealed that microplastics induce effects on antioxidant capacity, DNA damage, neurotoxicity and oxidative damage. S. plana is a significant target to assess the environmental risk of PS microplastics.


Assuntos
Bivalves , Plásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos , Dano ao DNA , Estresse Oxidativo , Poliestirenos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA